Macrocell Path-Loss Prediction Using Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
Macrocell electric field strength prediction model based upon artificial neural networks
A new macrocell prediction model for mobile radio environment is presented. The use of feedforward artificial neural networks makes it possible to overcome some important disadvantages of previous prediction models, including both deterministic and statistical types. Our sample implementation is based upon extensive electric field strength measurements (in the 900-MHz frequency band) that were ...
متن کاملPrediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کاملRainfall Prediction Using Artificial Neural Networks
The spatial interpolation comparison 97 is concerned with predicting the daily rainfall at 367 locations based on the daily rainfall at nearby 100 locations in Switzerland. We propose a divide -and-conquer approach where the whole region is divided into four sub-areas and each is modeled with a different method. Predictions in two larger areas were made by RBF networks based on the locational i...
متن کاملHorse Racing Prediction Using Artificial Neural Networks
Artificial Neural Networks (ANNs) have been applied to predict many complex problems. In this paper ANNs are applied to horse racing prediction. We employed Back-Propagation, Back-Propagation with Momentum, QuasiNewton, Levenberg-Marquardt and Conjugate Gradient Descent learning algorithms for real horse racing data and the performances of five supervised NN algorithms were analyzed. Data colle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Vehicular Technology
سال: 2010
ISSN: 0018-9545,1939-9359
DOI: 10.1109/tvt.2010.2050502